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ABSTRACT

With the increasing demand for high-resolution images from earth observation satellites, there is a need to
optimize the usability of the images being downloaded in the ground stations. Most captured satellite images
are not usable for certain applications due to high cloud cover percentage. To address this problem, this
research demonstrates a cloud detection and dynamic attitude correction evaluation software. This software
explores two key experiments. First is evaluating different image processing and machine learning-based
approaches to detect cloud cover. The cloud detection algorithms were evaluated based on their accuracy,
latency, and memory consumption. The second is exploring dynamic attitude correction to minimize the
effect of cloud cover on captured images. Results show that our software can help test algorithms that

increase the usability of captured images.
INTRODUCTION

The primary mission of most earth-observation
satellites is to capture high-resolution images for
mapping land cover, detecting vegetation, and mit-
igating disasters, among others. Satellite operators
plan to capture such images in advance by con-
sidering the target area, time of capture, attitude
maneuver, and weather forecast to create sched-
uled commands for these satellites. The weather
is the most unpredictable element, especially since
these commands are prepared days in advance. This
unpredictability regularly leads to unusable images
wherein clouds cover the target. The limited contact
and revisit time for downlink adds to the problem as
well, since it limits the operators’ ability to recapture
a target area in the event of a cloud-covered image
and effectively wastes the opportunity for capture.!
An emerging way to solve this problem is through
on-board cloud detection.2* Another possible solu-
tion is to have satellite image processing performed
by the ground stations.?>1°

This research leverages two key ideas: on-board
image processing and attitude computation. Our
system detects whether a captured image has an ac-
ceptable level of cloud cover. Otherwise, it will dy-
namically point the satellite to less cloudy areas near
the original target. We explore image processing
methods from traditional image processing to deep
learning techniques for cloud detection. The cloud
detection algorithms are evaluated on three differ-

ent datasets to demonstrate that they can general-
ize on different optical payloads. The first dataset
is a publicly available collection of Landsat 8 Level-
1 images.® On the other hand, the second dataset
is a collection of Middle Field Camera (MFC) im-
ages from the Philippine Diwata satellites.!! Lastly,
we train our algorithm on synthetic images from our
Mission, Attitude, and Telemetry Analysis (MATA)
simulation software.!? The MATA simulator is de-
veloped from the telemetry data of the Diwata satel-
lites and can simulate optical payload views over an
earth model with controllable cloud cover.

After determining the cloud detection algorithm,
we explore an appropriate control method through
the MATA simulator. The output of our research
will enable future satellite operations to have more
usable data. Furthermore, it will enable the explo-
ration of using machine learning for on-board com-
putation. In summary, the main contributions of
this paper are the following:

e exploration of highly accurate and low latency
cloud detection algorithms

e demonstration of generating synthetic satellite
images for cloud detection using the MATA
simulation software

e implementation of a dynamic attitude target
pointing using the MATA simulator
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CLOUD DETECTION ALGORITHMS

Four cloud detection algorithms are explored
for this research. These algorithms are to be im-
plemented in the satellite’s hardware, hence, they
should be highly accurate, adaptable, and have low
latency. The input of these algorithms are the RGB
composites since these bands are available to most
satellites.!® 14 Details of these algorithms are dis-
cussed in the next sections.

Otsu

The first cloud detection algorithm is Otsu,
a classical thresholding method. The researchers
opted to use this method since it is widely used
in remote sensing images and has low complex-
ity.519:1%:16 Otsu was also used in Diwata, the base
satellite for this research.!? 14

Similar to Otsu implementations for Diwata im-
ages,'® 1 rather than just using the RGB images
as input, an HSI (Hue, Saturation, Intensity) color
model was utilized. After converting the RGB im-
age to HSI, a significance map is then constructed to
highlight the differences between the cloud regions
and non-cloud regions.'4 !5 The significance map is
computed as follows:

I+¢

W:H+e @)

where I and H refer to the intensity and hue
of the image, and ¢ is the amplification factor.!%1°
The amplification factor for this method is set to 1.
After extracting the significance map, it is then fed
to the Otsu segmentation to create the output cloud
masks. The Otsu method assumes that the image
has two pixel classes or a bi-modal histogram.!® 17
It then computes for the optimal threshold by maxi-
mizing their inter-class variance.'® Fig. 1 shows the
process for the first cloud detection algorithm.

Figure 1: Otsu Method

K-means + Otsu

The second method is a variation of the first
method as shown in fig. 2. Rather than directly
applying Otsu to the extracted significance map, it
utilizes the K-means clustering algorithm. K-means
is an unsupervised learning algorithm which parti-
tions input data into k clusters.'® In order to parti-
tion the data, this algorithm minimizes the squared

error distance of the input data and the cluster’s cen-
troid.13 8 Since Otsu assumes bi-modal histogram,
it has a tendency to misclassify snow or smog as
clouds. The clustering algorithm could help improve
the algorithm to classify non-clouds and eliminate
interference.'® 19 The elbow method is used to get
the optimal K for clustering. The output image clus-
ters are then binarized using the threshold from the
Otsu algorithm.

Figure 2: K-means + Otsu Method

Deep Learning

With the rapid improvements in utilizing deep
learning architectures in embedded systems, the re-
searchers explored lightweight architectures for im-
age segmentation. Most image segmentation archi-
tectures have two major components: the encoder
and the decoder.® 112922 The encoder transforms
the input into small representation or features using
stacked convolutional layers while the decoder recov-
ers the original input size using transposed convolu-
tional layers.??

Since Diwata satellites have a small number of
annotated images for cloud segmentation, the re-
searchers used the concept of transfer learning to im-
prove the algorithm’s performance. Transfer learn-
ing is a method where a model is trained for an ini-
tial task with a high number of data points. The
model architecture is then reused for another appli-
cation with a similar task.!»'® For this research, the
baseline encoder is the MobileNet architecture since
it has proven to be lightweight and can be imple-
mented in embedded systems.?3
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The MobileNet is initially trained in the Ima-
geNet dataset which contains 14,197,122 different
images.?* Since most of the images in the ImageNet
dataset are RGB images, the input satellite images
were not converted to the HSI color model. The en-
coder block of the MobileNet is reused to serve as
the feature extractor of the deep learning architec-
ture. The decoders implemented in this research are
the most popular image segmentation architectures:
the UNet and the SegNet.?%2! A visualization of the
deep learning architectures for cloud segmentation is
shown below.

Deep Learning Architecture for
11,25

Figure 3:
Cloud Segmentation

DYNAMIC TARGET POINTING USING
THE MATA SIMULATOR

The Mission, Attitude, and Telemetry Analysis
(MATA) software is a simulation tool which gen-
erates or reads satellite telemetry.!? The kinemat-
ics and dynamics of the software are based on the
Philippine Diwata satellites. This tool is also used
by satellite engineers in a Hardware-In-the-Loop
(HIL) mode to test the components of an engineer-
ing model. The interface of the MATA simulator is
shown in Fig. 4.

Figure 4: MATA Simulator Interface!?

MATA has two main features that can be lever-
aged in machine learning applications. The first fea-
ture is its capability to simulate different optical pay-
load views in realtime. Currently, MATA can sim-
ulate three optical payload views of Diwata satel-
lites: the Middle Field Camera (MFC), Wide Field

Camera (WFC) and the Spaceborne Multispectral
Imager (SMI). Its second feature is the earth model
with a controllable cloud cover. With this feature,
it has the capability to generate synthetic images
with cloud annotations. This is a powerful feature
for machine learning since manual annotations are
tedious and are prone to error.

The machine learning algorithms are trained us-
ing the synthetic images generated by the MATA
simulator. The best cloud detection algorithm is
then integrated in the simulator via sockets. The
cloud segmentation and dynamic target pointing is
implemented in realtime.

The dynamic target pointing for this paper is a
simple method to demonstrate the simulator’s capa-
bility in testing attitude correction algorithms. The
satellite starts image capture using the MFC at nadir
or off-nadir position. The cloud detection algorithm
then segments the captured image and divides it
into quadrants. The satellite is then pointed to the
least cloudy quadrant and captures the area using
the SMI. It then captures a new MFC image and
repeats the process. A visualization of the MATA
simulator with cloud detection and dynamic target
pointing is shown in Fig. 5.

Figure 5: MATA - Cloud Interface

EVALUATION

This section discusses the different datasets uti-
lized, the implementation details for the deep learn-
ing architectures, and the evaluation metrics for the
cloud detection algorithms.

Datasets

The datasets were divided into training, valida-
tion, and test sets. The input RGB images were also
resized to 224 x 224. The details of the datasets are
shown below.

e 95-Cloud Dataset:5 8 consists of 75 Landsat 8
Collection 1 Level-1 scenes which were cropped
to non-overlapping patches; this dataset uses
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the natural false-color of the satellite images
(12,301 train; 9,201 valid; 9,201 test)

e MFC Dataset:'1'2° consists of Middle Field
Camera (MFC) images from Diwata Satellites
(70 train; 23 valid; 23 test)

e Synthetic Dataset: consists of simulated MFC
images from the MATA simulator (306 train;
102 valid; 102 test)

Implementation Details

The batch size of the deep learning architecture
was set to 16, running for 150 epochs with early stop-
ping. The optimizer is ADAM with a learning rate of
0.001. Random geometric data augmentations such
as flipping, scaling, and rotating of images were also
utilized. The network was implemented in Keras
with Tensorflow as backend using a NVIDIA RTX
2080 GPU.

Since the annotations for cloud and non-cloud
regions are highly imbalanced, the binary focal loss
is used as the network’s loss functions. This loss
function is an extension of the cross entropy and has
been proven effective in imbalanced data sets for ob-
ject detection?® and source separation.?? The focal
loss is given by the equation below.

Loss = —(1 —pt)’\log(pt) (2)

p; is defined as:

_p ify=1
b= 1—p otherwise

(3)

where p is the probability for the label y and A
a positive tunable focusing parameter.26

Metrics
The evaluation metrics for the cloud detection
algorithms are computed as follows:58
TP
J d= —— —— 4
e = TP Y FP+ TN 4)
TP
Precision = TP+7FP (5)
TP
Recall = m (6)
e TN
Speci ficity = TN+ FP (7)

2 % Precision x Recall
F158 = 8
core Precision + Recall (8)

TP+ TN )
TP+TN+FP+FN

where TP is the True Positive, TIN True Nega-
tive, F'P False Positive, and F'N False Negative.

On the other hand, the dynamic target point-
ing algorithm has two evaluation metrics: the cloud
percentage and the usability percentage, shown in
equations 10 and 11. For the usability metric, the
captured images from the simulator were manually
selected based on the image usability criteria from
Banatao et al.'3

Accuracy =

Cloud % = no. of predicted cloud pizels

1
total no. of pixels (10)

no. of manually selected usable images

Usability % =
v total no. of captured images

(11)
RESULTS AND ANALYSIS

This section discusses the performance of the
cloud detection algorithms. Other than the im-
age segmentation metrics, their latency and memory
consumption were also evaluated. Lastly, the eval-
uation of the attitude correction algorithm in the
MATA simulator is presented.

Cloud Detection

As shown in the tables below, the MobileNet
+ UNet has the best overall metrics for the three
datasets. It can also be seen that deep learning al-
gorithms can generalize to different satellite images
than the traditional image processing methods. As
shown in the sample qualitative results in Fig. 6, the
K-means + Otsu algorithm has a pixel-like segmen-
tation while the MobileNet + SegNet has a blob-like
segmentation. It can also be seen that the Otsu and
MobileNet + UNet have more detailed segmentation
results for the Diwata and MATA images. Moreover,
the traditional image processing algorithms could
not properly segment natural false-color satellite im-
ages like the 95-cloud dataset.

Table 1: Results for 95-Cloud Dataset

Metrics Otsu K-means MobNet | MobNet
+ Otsu + UNet | + Segnet
Jaccard 0.0223 0.0051 0.7142 0.7108
Precision 0.5303 0.6156 0.8105 0.8015
Recall 0.0275 0.0054 0.8347 0.8370
Specificity | 0.9915 0.9991 0.9704 0.9678
F1 Score 0.0523 0.0107 0.8224 0.8189
Accuracy 0.6881 0.6880 0.9495 0.9490
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Table 2: Results for Diwata MFC Images

Metrics Otsu K-means MobNet | MobNet
+ Otsu + UNet | + Segnet
Jaccard 0.6698 0.6561 0.8066 0.7521
Precision 0.8887 0.8728 0.8813 0.8123
Recall 0.7304 0.723 0.8641 0.8340
Specificity | 0.7798 0.7363 0.9114 0.8391
F1 Score 0.7452 0.7333 0.8682 0.8186
Accuracy 0.7148 0.7051 0.9102 0.8953

Table 3: Results for

Synthetic MATA Images

Metrics Otsu K-means MobNet | MobNet
+ Otsu + UNet | + Segnet
Jaccard 0.8799 0.8697 0.8926 0.8491
Precision 0.9533 0.9338 0.9072 0.8755
Recall 0.9263 0.9320 0.8969 0.8617
Specificity 0.8531 0.8457 0.9934 0.9744
F1 Score 0.9255 0.9187 0.9019 0.8685
Accuracy 0.9110 0.9152 0.9908 0.9784

Other than the image segmentation metrics, the
latency and the memory consumption are evaluated
for these algorithms to be integrated in the satel-
lite’s hardware. As shown in table 4, the fastest al-
gorithm to segment an image is the Otsu (= 4.3ms)
while the slowest algorithm is the MobileNet + UNet
(= 176.4ms).

The Otsu and K-means algorithms do not con-
sume memory, hence, only the deep learning algo-
rithms were evaluated for the storage metric. The
deep learning models were converted to Tensorflow
Lite, a format which can be integrated in embed-
ded systems like the Raspberry Pi and Google Coral
TPU.?7 As shown in table 4, the MobileNet + Seg-
Net has a smaller memory consumption than the
MobileNet 4+ UNet.

Table 4: Latency and Storage Evaluation

on-board the satellite with dynamic target pointing.
It has the lowest memory consumption and inference
time. For this paper, the MobileNet + UNet algo-
rithm was utilized to provide input for the dynamic
target pointing since the main focus is to develop
a cloud attitude correction software. An inaccurate
cloud detection algorithm would result to improper
testing of the satellite’s dynamic control. A future
work for this research is the improvement of deep
learning models to be faster and more lightweight.

Dynamic Target Pointing

Different quadrant angles were explored for the
attitude correction algorithm. The quadrant angle
is the angle from the center of the image to the
center of the target quadrant as shown in Fig. 7.
Table 5 shows the attitude correction results when
the satellite starts at nadir position. As shown in
these results, the quadrant control with 5° improved
the usability of the captured MFC and SMI im-
ages. On the other hand, when the satellite starts
in an off-nadir position, the quadrant control with
1° slightly improved the performance of the image
capture. Qualitative results for the dynamic target
pointing algorithm is shown in Fig. 8.

Figure 7: Dynamic Target Pointing Visualiza-
tion (black line for origin, red line for target)

Table 5: Attitude Evaluation (Nadir)

Method Inference Memory
Time (s) (MB)
Otsu 0.0043 -
K-means + Otsu 0.1089 -
MobNet + UNet 0.1764 6.3
MobNet + Segnet 0.1377 5.56

As shown in the results, the cloud detection algo-
rithms have different advantages and disadvantages.
Researchers need to prioritize the metric which fits
their system. The Otsu is the recommended algo-
rithm if the cloud detection is to be implemented

Method | Cloud Usability| Cloud Usability
% % % %
(MFC) | (MFC) | (SMI) (SMI)

Nadir 19.1892 46.4865 23.7649 47.0270

Quad 17.7027 46.4865 20.3000 44.0540

(0.5°)

Quad 18.0946 44.3243 21.0324 44.3243

(1°)

Quad 18.5081 46.2162 21.2973 47.2973

(3°)

Quad 17.4459 | 55.9460 18.2135 | 52.9730

(5°)
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Figure 6: Sample Qualitative Results for the Cloud Detection Algorithms

Table 6: Attitude Evaluation (Off-Nadir)

Method | Cloud Usability| Cloud Usability
% % % %
(MFC) | (MFC) | (SMI) (SMI)

Off- 10.7822 69.1111 9.7822 70.6667

Nadir

Quad 11.3311 70.6667 10.4556 70.6667

(0.5°)

Quad 9.5756 70.6667 9.1911 75.5556

(1°)

Quad 10.3956 69.3333 10.1711 67.5556

(3%

Quad 12.0644 64.0000 11.2267 67.1111

(5°)

CONCLUSION AND FUTURE WORK

This paper presents MATA-Cloud, a cloud cover
attitude correction evaluation software. Four cloud
detection algorithms were explored for this research.
Results show that Otsu, a traditional thresholding
algorithm for image segmentation is the fastest al-
gorithm. Meanwhile, deep learning models are the
most accurate and adaptable algorithms to different
datasets. Deep learning architectures still need to
further develop for them to be integrated on-board
a satellite with dynamic target pointing capability.

The MATA-Cloud also demonstrated how it can
be a test bed for attitude correction algorithms.

Other dynamic target pointing algorithms can be
integrated in the simulator for future work. With
the simulator’s capability to capture images, atti-
tude determination modules which depend on im-
ages such as star trackers could also be explored.
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